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Analytical solution of a generalized Penna model

J. B. Coe and Y. Mao
Cavendish Laboratory, Madingley Road, Cambridge, CB3 0HE, United Kingdom

~Received 28 February 2003; published 23 June 2003!

In 1995 Penna introduced a simple model of biological aging. A modified Penna model has been demon-
strated to exhibit behavior of real-life systems including catastrophic senescence in salmon and a mortality
plateau at advanced ages. We present a general steady-state, analytic solution to the Penna model which is able
to deal with arbitrary birth and survivability functions. This solution is employed to solve standard variant
Penna models studied by simulation. Different Verhulst factors regulating both the birth rate and external death
rate are considered.
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I. INTRODUCTION

While nothing in life is certain except death and taxes@1#,
only death is universal. Death and the preceding period
functional decline are a fate to be endured by all from m
flies to men@2–5#. The steady decline in the functional ab
ity of an organism over time is known as senescence or
ing. The phenomenon of aging is of obvious interest and
attracted attention from biologists and physicists for so
time @6#.

The establishment and maintenance of harmful beha
by natural selection would appear to defy explanati
Medawar proposed@7,8# that the strength of selection o
survival related genes is dependent on the age at which
genes exert their effects. For genes that express thems
late in the life of an organism, there is less impact on
dwindling population than for a gene whose effect is e
pressed earlier in life.

It has been suggested@9# that favorable mutations that ac
to increase survivability can be used to account for sen
cence. Such mutations will, under natural selection, incre
the survivability at early ages and converting an initially co
stant mortality rate into an age-dependent one. It seems
probable that this mechanism can provide a full explana
of aging as positive mutations are very rare compared
harmful ones. Instead a better understanding can be ga
by considering processes through which genes with harm
effects are introduced.

There are two such theories: antagonistic pleiotropy
mutation accumulation@10,11#. According to antagonistic
pleiotropy, senescence occurs as a result of mutations
increase the functional ability of the young and decrease
of the old. Mutation accumulation proposes that aging occ
due to mutations that are initially harmless but take effec
later stages in the life of an organism. In either case,
force of natural selection is reduced once an organism a
beyond its point of reproductive maturity so the effects
either will be confined to older ages.

The Penna model is the most commonly used mode
aging through mutation accumulation@12,13# and is ideally
suited to computational implementation. Using Monte Ca
methods@14#, the model predicts features found in real ec
logical systems, such as, the catastrophic senescence o
cific salmon@15#. Analytical work by Almeidaet al. @16# on
1063-651X/2003/67~6!/061909~8!/$20.00 67 0619
of
-

g-
s

e

or
.

he
ves
e
-

s-
se
-

-
n
to
ed
ul

d

at
at
rs
t
e
es
f

f

o
-
Pa-

a theoretical approach to biological aging can be adapte
apply to specific cases of the Penna model. This work p
sents a solution to a generalized Penna model, in partic
one that allows incorporation of arbitrary survivability an
birth functions. Subtle modification to the survivability func
tion has been found@18# to demonstrate a mortality platea
at older ages, a result that had so far eluded theories of
tation accumulation.

To ensure that the population is in a steady state, the t
population is controlled through the use of a Verhulst fac
@19,20#. Traditionally, this has been a genome-independ
chance of death for every individual regardless of age. T
model also considers a birth rate that decreases as the p
lation grows and resources become more scarce@21#. In
agreement with earlier work@16#, we find a maximum per-
mitted genetic lifespan and predict the existence of ca
strophic senescence for organisms whose reproductive li
terminated by an upper age limit. The model is extended
continuum case, which is explicitly solved.

II. THE PENNA MODEL

The Penna model as formulated by Penna represen
genome by a single string of 1’s and 0’s. Time is treated a
discrete variable. A 1 on a sitei along the string means tha
the organism develops a disease at agei. Once an organism
develops a numberT of diseases, it dies. At each time step
organism reproduces with probabilityb. The offspring’s ge-
nome is a copy of its parent’s with a probabilitym of each bit
mutating into a 1. Positive mutations are rare in nature a
ignored in this model, there is no possibility of a 1 mutati
into a 0. The bit string is traditionally 32 bits long for ease
computational implementation. The finite-length bit string
an artifact of simulation and is discounted in our analy
where there is no need for such a restriction. Along sim
lines to Almeida and Thomas@17# we consider a fixed prob
ability of mutation occurring on any site. The bit-string sit
are labeled so that there is a zeroth site, which is read as
as the organism is born.

A. The solution of a simple Penna model

Consider a simple Penna model where an organism
after a single disease (T51) and can reproduce with equa
©2003 The American Physical Society09-1
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probability at any point during its life. An individual organ
ism can be characterized uniquely by two variables, its agx
and its string lengthl. The string length is the location of th
1 bit on the string and corresponds to the number of ti
steps for which the organism lives. To produce an organ
with string-lengthl either a perfect copy of a lengthl organ-
ism or a mutated copy of an organism with longer stri
length must be born. To produce an organisms of str
lengthl, an organism must give birth, with probabilityb, and
the firstl sites on the offspring must go unmutated, each w
probability (12m). For the mutated offspring, the pare
string must be longer, the parent must give birth, with pro
ability b, the firstl sites on the offspring must go unmutate
and one site must be mutated with probabilitym. As all or-
ganisms are capable of reproduction, mutated and pe
copies of organisms of any age must be taken into acco

In our notationnj (x,l ) is the number of organisms wit
agex and string lengthl at time stepj. We definee2b to be
(12m). New organisms are produced as mutated or unm
tated copies of organisms in the previous time step:

nj 11~0,l !5be2b l (
x50

`

nj~x,l !1mbe2b l (
l 8. l

`

(
x50

`

nj~x,l 8!.

~1!

For a steady state there is no difference betweenn(x,l ) at
different time steps, so the time step indices can be drop
The simple Penna model is constructed in such a way tha
organism with string lengthl lives for l time steps. The prob
ability of giving birth during each of these time steps is
constantb. Thus the sum over all ages is a sum from 0 tol of
n(x,l ) which in the steady state can be written asl
3n(0,l ). Definingn( l )5 l 3n(0,l ), the equation now read

05be2b ln~ l !2
n~ l !

l
1mbe2b l (

l 8. l

`

n~ l 8!. ~2!

A similar equation can be written forn( l 11). Manipulation
of both will eliminate the sum overl 8 and give a recursion
relation

n~ l 11!

n~ l !
5

l 11

l

eb l2bl

eb( l 11)2b~ l 11!e2b
. ~3!

If this expression is to be usefully employed, the steady s
interdependence ofb andb must be examined. In the stead
state it is required that, in the statistical limit, the populati
size and distribution remain unchanged over time for c
stant values ofb andb.

As the string lengthl gets longer, the probability of an
unmutated copy being produced is reduced by an expone
factor e2b l . For an organism to be able to produce a sin
perfect copy of itself during its lifespan,lbe2b l51. If any
subpopulation is capable of maintaining itself, there must
no contribution to that subpopulation from mutations. As
subpopulations will have contributions from mutation fro
longer strings, it follows that a subpopulation capable
maintaining itself must have the longest string length in
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population,l max. For all other subpopulations withl , l max
the probability of an organism producing a perfect copy
itself must be less than 1 to avoid population explosion wh
contributions from mutation are taken into account.

It is sufficient to state that

~ l max21!be2b( l max21),1. ~4!

The constraints onl max lead to a maximum sustainable valu
and a corresponding steady-state birth rate,

l max,
1

12e2b
, ~5!

b5
1

l max
eb l max. ~6!

In agreement with Ref.@16# we have predicted the existenc
of a maximum sustainable genetic lifespan, see Figs. 1–

FIG. 1. Lifespan distribution forl max530. Analytical results
(3) are compared with those from simulation (h). Simulation size
107.

FIG. 2. Lifespan distribution forl max530, l B55. Analytical re-
sults (3) are compared with those from simulation (h). Simula-
tion size 107.
9-2
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The system has a range of possible values forl max and
will adopt one depending on the dynamics and the ini
state of the system. In simulation, a population is often re
lated through the use of a Verhulst factor@12,19,20#. This
ensures that a population will find a steady state configu
tion. Such simulations also regulate the total populati
which is realistic in any system with finite resources. It h
been suggested@21# that by regulating the birth rate, th
system will adopt a biologically realistic equilibrium. Th
simple Penna model solved here can be used to explain
havior of these simulations, which replace the constant b
rate with a population-dependent one. WhereN is the total
population,A a constant of the simulation, andNmax is the
maximum population the simulation will allow, the birth ra
at any time stepi is given by

bi5AS 12
Ni

Nmax
D . ~7!

FIG. 3. Lifespan distribution forl max530, g50.02. Analytical
results (3) are compared with those from simulation (h). Simu-
lation size 108.

FIG. 4. Lifespan distribution forl max530, l B55, g50.02. Ana-
lytical results (3) are compared with those from simulation (h).
Simulation size 108.
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In the steady state the total population will be that required
set this dynamic Verhulst birth rate to the value required
the earlier equilibrium conditions:

N5NmaxS 12
eb l max

Almax
D . ~8!

B. The solution of a Penna model with reproductive
threshold ages

Frequently the Penna model used@13# has birth cut-offs
so that an organism begins giving birth at an age,l B up to an
age, l S . When able to reproduce, an organisms does so
rate b as before. The equation for stepwise evolution of
age zero subpopulation remains the same except that
birth rate is now a function of the organism’s age. An orga
ism is no longer capable of reproducing in every time st
but only those for which its age is greater than or equal tol B
and less thanl S . The sum over ages must now sum over t
age-dependent birth term as well:

FIG. 5. Lifespan distribution forl max530, T54.

FIG. 6. A plot of genetic lifespan distribution for a discrete
(3) and continuum Penna model withl max530.
9-3
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n~0,l !5e2b l (
x50

`

bxn~x,l !1me2b l (
l 8. l

`

(
x50

`

bxn~x,l 8!.

~9!

As in the simple Penna model,n( l ) is defined to bel
3n(0,l ) as the survivability function is unaltered. Summin
over reproductive ages leads to a simplified steady s
equation

05be2b lx~ l !n~ l !2
n~ l !

l
1mbe2b l (

l 8. l

`

x~ l 8!n~ l 8!,

~10!

where x( l ) is defined as@(x50
` bxn(x,l )#/@bn(0,l )# and is

given by

x~ l !50 for l< l B

x~ l !5 l 2 l B for l B, l< l S

x~ l !5 l S2 l B for l . l S . ~11!

Employing the same method as was used to solve the sim
Penna model, a recursion relation can be obtained,

n~ l 11!

n~ l !
5

l 11

l

eb l2bx~ l !

eb( l 11)2bx~ l 11!e2b
. ~12!

In the case of no birth thresholds,x( l )5 l and we retrieve
Eq. ~3!.

The steady state conditions for a population will ha
been altered by the introduction of birth threshold ages. T
conditions forl max are, by the same reasoning as before,

l maxbe2b l maxx~ l max!51, ~13!

~ l max21!be2b( l max21)x~ l max21!,1. ~14!

There are two distinct nontrivial cases for the position
l max, either it is below the upper reproductive boundary o
is contained within the reproductive window.

Considerl max<lS. The boundary conditions can be wri
ten as

~ l max2 l B!be2b l max51, ~15!

~ l max212 l B!be2b( l max21),1. ~16!

After rearrangement, this yields

l max,
11~e2b21!l B

12e2b
~17!

with a corresponding birth rate of

b5
eb l max

l max2 l B
. ~18!

Consider now the case ofl max.lS. The boundary conditions
become
06190
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b~ l S2 l B!e2b l max51, ~19!

b~ l S2 l B!e2b( l max21),1. ~20!

Requiringeb,1. This cannot be satisfied asb is a mutation
rate and consequently a positive number. As a resultl max is
not permitted to be greater than the second birth thresholl S
for any value of mutation rate or birth rate. A steady sta
population will not maintain organisms that are no long
able to contribute to reproduction. This result does not ap
to organisms who have some social structure and assis
rearing young once they themselves are no longer of a re
ductive age. Such cooperative complications@22# are not
taken into account here.

C. The solution of a Penna model with an external death rate

Consider the simple Penna model. An external death
is introduced into this model so that in any time step
organisms has a chanceg of dying independent of its bit-
string composition. We define the survival rates as 12g.
Counting contributions from unmutated and mutated rep
duction, the steady-state equation is

n~0,l !5be2b l (
x50

`

n~x,l !1mbe2b l (
l 8. l

`

(
x50

`

n~x,l 8!.

~21!

The sums over all ages can be evaluated by taking into
count the external source of death:

(
x50

`

n~x,l !5 (
x50

l 21

sxn~0,l !5
12s l

g
n~0,l !. ~22!

Definingn( l )5@(12s l)/g#n(0,l ), the steady state equatio
can be rearranged to give

05be2b ln~ l !2
g

12s l
n~ l !1mbe2b l (

l 8. l

`

n~ l 8!. ~23!

The same approach is used as before to give an recu
relationship betweenn( l ) andn( l 11):

n~ l 11!

n~ l !
5

12s l 11

12s l

geb l211s l

geb( l 11)2~12s l 11!e2b
. ~24!

In the limit of a vanishing external death rate,~small g)
power-series expansion of these expressions will, to lead
order, give the conditions from the simple Penna model~3!.

To find the steady state relationship betweenb, b, andg,
the same conditions are imposed as before.n( l max) must be
self-sustaining and all lower string lengths are partly relia
on mutation:

12s l max

g
be2b l max51,

12s l max21

g
be2b( l max21),1. ~25!
9-4
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These conditions give the birth rate and limit the value
l max:

l max,

lnS eb21

ebs2121
D

ln s
, ~26!

b5
geb l max

12s l max
. ~27!

In the limit of a small external death rate these expressi
become those from the simple Penna model case, Eqs~5!
and ~6!.

An external death rate is commonly used in simulatio
@12,13# as a Verhulst factor to regulate the population. In a
time step an organism has probability of death given
Ni /Nmax. The preceding analysis can be used to explain h
systems using this Verhulst factor behave. In the steady s
the external death rate provided by this Verhulst factor m
satisfy the above conditions for stability at and aroundl max.
For specifiedb, b, andl max, g can be found numerically an
the total population can be found fromN5gNmax.

D. The solution of a Penna model with an external death rate
and reproductive threshold ages

It is a relatively trivial matter to extend the analysis of
Penna model with an external death rate to incorporate b
threshold ages. This type of model has been extensively s
ied in simulation, so is of sufficient interest to consider se
rately. Only the lower birth threshold needs to be conside
An upper threshold, as demonstrated, will only serve to a
ficially lower the maximum allowable string lengthl max. As
ever, in the steady state

n~0,l !5e2b l (
x50

`

bxn~x,l !1me2b l (
l 8. l

`

(
x50

`

bxn~x,l 8!.

~28!

Taking external deaths into account when summing over
productive ages, we definexg( l ) as

xg~ l !50 for l , l B

xg~ l !5
s l B2s l

g
for l B< l . ~29!

With n( l ) given by @(12s l)/g#n(0,l ), a recursion relation
for n( l ) can be given

n~ l 11!

n~ l !
5

12s l 11

12s l

eb l2bxg~ l !

eb( l 11)2bxg~ l 11!e2b
. ~30!

E. The solution of a multiple disease Penna model

An organism in the simple Penna model dies upon
countering a single 1 on its bitstring. Models are frequen
set up so that an organism must developT diseases before
06190
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death. Each site on the string is occupied by one or no
eterious mutations, multiple mutations on a single site
not allowed.

The relevant part of an individual string is that containi
the first T 1s, as bits after this point are irrelevant. Rath
than uniquely classifying an organism by its genetic lifesp
l, as was done in the single mutation case, we must n
specify the position of each of the firstT mutations on the
organism’s bit string. The only other property an organis
has is its agex. Any individual can thus be uniquely class
fied by its typex; l 1 ,l 2 , . . . ,l T , wheren(x; l 1 ,l 2 , . . . ,l T) is
the number of the specified organisms. The position of
final disease on the string determines an organism’s ag
death, the position of the other bits play no part in this, n
do they determine birth rate. This inspires the ansatz
n(x;$ l %) has no dependency on the positions of the non
minal diseases.

Contributions to a child subpopulation from a single m
tation come from all organisms withT21 bits in common
with the child subpopulation, and the final bit at a positi
l 8. l T . ForT54, wherel 1 , l 2 , l 3, andl 4 are the deleterious
bit positions in the child subpopulation, there will be cont
butions from mutation from n(x; l 1 ,l 2 ,l 3 ,l 8),
n(x; l 1 ,l 2 ,l 4 ,l 8), n(x; l 1 ,l 3 ,l 4 ,l 8), and n(x; l 2 ,l 3 ,l 4 ,l 8).
Our ansatz means that all these terms are the same as
are dependent on only agex and the position of the termina
bit l 8. WherenT(x,l ) is the number of organisms with agex
and terminal mutation at sitel, the number of organisms
capable of contributing through a single mutation
TnT(x,l 8). In a similar vein to the single disease Pen
model, we can now account for all birth terms and genera
steady state equation:

nT~0,l !5beb( l 2T11)(
x50

`

nT~x,l !

1Tmbeb( l 2T11) (
l 8. l

`

(
x50

`

nT~x,l 8!. ~31!

This can be solved in the same manner as that for the sim
Penna model, wherenT( l )5 l 3nT(0,l ),

nT~ l 11!

nT~ l !
5

l 11

l
3

e2b( l 2T11)2bl

e2b( l 112T11)2b~ l 11!~eb1T21!
.

~32!

nT( l ) is not of direct interest in determining age distributio
or mortality rates as it is only one of several configuratio
of nonterminal mutations. This is amended by summing o
all possible configurations so thatn( l )5CT21

l nT( l ).
The steady state correspondence betweenb, b, and l max

for arbitraryT is

l max,
1

12e2b
, ~33!

b5
1

l max
eb( l max2T11). ~34!
9-5
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Confirming the solution of a multiple disease Pen
model through simulation presents considerable proble
The solution presented here is not unique and there is
reason for a given simulation to settle on this particu
steady state distribution. Within any finite population, it h
been demonstrated@23# that if individuals are arbitrarily la-
beled, then, after sufficient time, the entire population w
have descended from individuals with just one of these a
trary labels. The ansatz used treats the nonterminal muta
as arbitrary labels so the assumption that they are ev
distributed will be upset by finite-sized population dynami

F. The solution of a multiple disease Penna model with
external death rate and reproductive threshold ages

As in the single mutation case, it is a relatively simp
matter to adapt the multiple disease solution to incorpo
external death rate and birth thresholds. An upper birth cu
is not considered as this will only serve to artificially low
l max. We do not spend any time on the derivation here
present the results for those who may consider them of
ticular interest.

Wheren( l )5@(12s l)/g#n(0,l ) andxg( l ) is given by

xg~ l !50 for l , l B

xg~ l !5
s l B2s l

g
for l B< l , ~35!

n~ l 11!

n~ l !
5

CT21
l 11

CT21
l

l 2s l 11

l 2s l

3
eb( l 2T11)2bxg~ l !

eb( l 112T11)2bxg~ l 11!~eb1T21!
,

~36!

l max,

lnS ~eb21!s l B

ebs2121
D

ln s
, ~37!

b5
geb( l max2T11)

s l B2s l max
. ~38!

G. A continuum Penna model

The simple Penna model can be reformulated so
rather than considering discrete time steps, time is treate
a continuous variablet. As before any subpopulation is cha
acterized by its agea and string lengthl, which are no longer
constrained to be integers. The birth rateb is now the prob-
ability of an organism reproducing in unit time. Likewis
the mutation ratem is the probability of a mutation occurrin
in unit string length. The steady state equation for this mo
is
06190
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n~0,l !5be2b lE
0

`

n~x,l !dx1mbe2b lE
0

`

dxE
l

`

dl8n~x,l 8!.

~39!

As in the discrete case the sum over ages, now an inte
can be evaluated employing the fact thatn(0,l ) is constant
over time. The integral over ages ofn(x,l ) can be written as
n( l ), wheren( l )5 l 3n(0,l ), giving

05be2b ln~ l !12
n~ l !

l
1mbe2b lE

l

`

n~ l 8!dl8. ~40!

The steady state equation can be rewritten in the form be
and the integrals evaluated numerically:

n~ l 1x!

n~ l !
5

l 1x

l

eb l2bl

eb( l 1x)2b~ l 1x!

3expS E
l

l 1x mbl8

bl82eb l 8
dl8D . ~41!

As in the discrete Penna model, in the steady state,n( l max)
must be self-sustaining and all subpopulations with a low
genetic lifespan partly reliant on mutation. Asl is no longer
constrained to be an integer, the conditions become

l maxbe2b l max51, ~42!

~ l max2d!be2b( l max2d),1, ~43!

whered is arbitrarily small. These conditions give

l max<
1

b
, ~44!

b5
1

l max
eb l max. ~45!

H. A continuum Penna model with multiple diseases

A multiple disease Penna model can also be reformula
into a continuum case. The mutations are considered to bd
functions@17# and, as in the discrete case, an organism d
once it has accumulatedT diseases.

Recalling the first-order steady state equation from
discrete multiple mutation model

05be2b( l 2T11)nT~ l !2
nT~ l !

l

1Tmbe2b( l 2T11) (
l 8. l

nT~ l 8!. ~46!

In the continuum model, where mutations no longer take
a finite length on the string, this will become

05be2b lnT~ l !2
nT~ l !

l
1Tmbe2b lE

l 8. l
nT~ l 8!dl8.

~47!
9-6
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An integral equation can be derived from this using a sim
approach as in the single disease continuum case. To e
ate n( l T), all possible configurations of nondeleterious m
tations must be summed over.

In the discrete Penna model this leads to

n~ l !5CT21
l nT~ l !, ~48!

as each mutation takes up one site on the string. When p
tioning d functions, there is no possibility of mutations ove
lapping as they are of infinitesimal size on the string. In
continuous case,n( l ) is given by

n~ l !5 l T21nT~ l !. ~49!

n( l T1x) is given by

n~ l 1x!

n~ l !
5

~ l 1x!T21

l T21

l 1x

l

eb l2bl

eb( l 1x)2b~ l 1x!

3expS E
l

l 1x mbTl8

bl82eb l 8
dl8D . ~50!

The steady state conditions are unchanged from the si
disease continuous Penna model asT.1 will only affect
contribution from mutations that have no effect on the s
population with string lengthl max. The steady state cond
tions are

l max<
1

b
, ~51!

b5
1

l max
eb l max. ~52!

III. A PENNA MODEL WITH ARBITRARY BIRTH AND
SURVIVABILITY FUNCTIONS

The methods employed to solve the variety of Pen
models discussed so far can be generalized to any P
model where the birth and survival functions are functions
the organisms’ age and genetic lifespan. The survival fu
tion is defined so that the number of organisms of agex is
given by n(x,l )5 f s(x,l )n(0,l ). The birth functionb(x,l )
gives the average number of offsprings produced per t
step by an organism of agex and string lengthl. The steady-
state equation can be written as

n~0,l !5e2b l (
x50

`

b~x,l !n~x,l !

1me2b l (
x50

`

(
l 8. l

`

b~x,l 8!n~x,l 8!. ~53!

Defining n( l )5(x50
` n(x,l ), where n( l ) is the number of

organisms with string lengthl regardless of their age, an
employingx( l ) andL( l ), where
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L~ l !5 (
x50

`

f s~x,l !, ~54!

bx~ l !5 (
x50

`

b~x,l ! f s~x,l !, ~55!

the steady state equation can be written as

05be2b l
x~ l !

L~ l !
n~ l !2

n~ l !

L~ l !
1mbe2b l (

l 8. l

`
x~ l 8!

L~ l 8!
n~ l 8!.

~56!

L( l ) is the expected lifespan of an organism with stri
lengthl andbx( l ) is the expected number of offsprings fro
an organism of string lengthl throughout its life.b has been
chosen so that throughout this paper the highest birth rat
any time step isb. Using the steady state equation, a gene
recursion relation can be generated

n~ l 11!

n~ l !
5

L~ l 11!

L~ l !

@eb l2bx~ l !#

@eb( l 11)2bx~ l 11!e2b#
. ~57!

The conditions imposed onl max to ensure thatn( l max) is
self-sustaining and that the population remains finite are

bx~ l max!e
2b l max51, ~58!

bx~ l max21!e2b( l max21),1. ~59!

Thus

x~ l max21!

x~ l max!
,e2b, ~60!

b5
eb l max

x~ l max!
. ~61!

The survival functionf s(x,l ) should for physical reason
be a monotonically declining function. There are no co
straints on the birth function other than that it must be po
tive. Through suitable choices of birth and survivabili
functions, the Penna model can be adapted to model a w
variety of real-life behavior. In previous work@18#, we have
demonstrated that a subtle modification to the simple Pe
model, namely, replacing the step-function survivability w
a Fermi function, is capable of producing a mortality plate
This particular modification does not change the steady-s
equation from that of the simple Penna model, though t
would not pose any problem to the general solution p
sented here.

Incorporating the methods used to solve continuous
T.1 models in this paper will allow for application of thi
general method to arbitraryT.1 and continuum cases.

IV. EXTRACTING MORTALITY DATA FROM GENETIC
LIFESPAN DISTRIBUTIONS

The solutions presented so far have derived relations
for distribution of genetic lifespans of a population. Fro
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genetic lifespan distributions, mortality behavior can
evaluated. Recall that a distribution was determined forn( l ),
that is, the number of organisms with genetic lifespanl. The
required quantity for evaluating mortality rates isn(0,l ) and
is given byn( l )/L( l ).

The number of organisms of genetic lifespanl dying be-
tween agex andx11 is given by

n~x,l !2n~x11,l !5n~0,l !@ f s~x,l !2 f s~x11,l !#. ~62!

The number of organisms dying at agex is this quantity
summed over all genetic lifespans. The fraction of the to
population dying at agex is defined as the time-step morta
ity rate M(x),

M~x!5

(
l

n~0,l !@ f s~x,l !2 f s~x11,l !#

(
l

n~0,l ! f s~x,l !

. ~63!
m

s

06190
l

V. CONCLUSION

We have presented an analytic solution to the steady s
Penna model capable of dealing with arbitrary survival a
birth functions. We hope this will stimulate further modifica
tions to the Penna model, where suitable choices of birth
survival functions will allow an adapted Penna model to e
compass and explain more observed phenomena within
structured populations. In our future work we will study th
dynamics of the Penna model and consider more soph
cated complications such as the introduction of a posit
mutation rate.

ACKNOWLEDGMENTS

The authors have been assisted and inspired by M
Cates, L. Demetrius, R. Farr, M. J. Rutter, and D. Stauf
who are gratefully acknowledged.
ev.

na,

-

@1# B. Franklin ~unpublished!.
@2# Opinion, Nature~London! 397, 89 ~1999!.
@3# M. Rose,Evolutionary Biology of Aging~Oxford University

Press, New York, 1991!.
@4# B. Charlesworth,Evolution in Age-Structured Populations,

2nd ed.~Cambridge University Press, Cambridge, 1994!.
@5# C.E. Finch,Longevity, Senescence and the Human Geno

~University of Chicago Press, Chicago, 1990!.
@6# D. Stauffer, Biological Evolution and Statistical Physic

~Springer, Berlin, 2002!.
@7# P.B. Medawar, Mod. Q.1, 30 ~1946!.
@8# P.B. Medawar,An Unsolved Problem of Biology~Lewis, Lon-

don, 1952!.
@9# W.D. Hamilton, J. Theor. Biol.12, 12 ~1966!.

@10# S.D. Pletcher and J.W. Curtsinger, Evolution~Lawrence,
Kans.! 52, 2 ~1998!.

@11# B. Charlesworth, J. Theor. Biol.210, 47 ~2001!.
@12# T.J.P. Penna, J. Stat. Phys.78, 1629~1995!.
@13# S. Moss de Oliviera, Physica A257, 465 ~1998!.
@14# T.J.P. Penna and D. Stauffer, Int. J. Mod. Phys. C6, 233
e

~1995!.
@15# T.J.P. Penna, S. Moss de Oliviera, and D. Stauffer, Phys. R

E 52, 3309~1995!.
@16# R.M.C. Almeida, S. Moss de Oliviera, and T.J.P. Pen

Physica A253, 366 ~1998!.
@17# R.M.C. Almeida and G.L. Thomas, Int. J. Mod. Phys. C11,

1209 ~2000!.
@18# J.B. Coe, Y. Mao, and M.E. Cates, Phys. Rev. Lett.89, 288103

~2002!.
@19# P.F. Verhulst, Memoires de l’Academic Royale de Belgique18,

1 ~1845!.
@20# S. Moss de Oliviera, P.M.C. de Oliviera, and D. Stauffer,Evo-

lution, Money, War and Computers~Teubner, Stuttgart, 1999!.
@21# M. Magdon-Maksymowicz, A.Z. Maksymowicz, and K. Kula

kowski, Theory Biosci.119, 139 ~2000!.
@22# P.B. Stacey and W.D. Koenig,Cooperative Breeding in Birds:

Long Term Studies of Ecology and Behaviour~Cambridge Uni-
versity Press, Cambridge, 1990!.

@23# D. Makowiec, J. Dabowski, and M. Groth, Physica A273, 169
~1999!.
9-8


