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Analytical solution of a generalized Penna model
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In 1995 Penna introduced a simple model of biological aging. A modified Penna model has been demon-
strated to exhibit behavior of real-life systems including catastrophic senescence in salmon and a mortality
plateau at advanced ages. We present a general steady-state, analytic solution to the Penna model which is able
to deal with arbitrary birth and survivability functions. This solution is employed to solve standard variant
Penna models studied by simulation. Different Verhulst factors regulating both the birth rate and external death
rate are considered.
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[. INTRODUCTION a theoretical approach to biological aging can be adapted to
apply to specific cases of the Penna model. This work pre-
While nothing in life is certain except death and takels ~ sents a solution to a generalized Penna model, in particular,
only death is universal. Death and the preceding period o@ne that allows incorporation of arbitrary survivability and
functional decline are a fate to be endured by all from medbirth functions. Subtle modification to the survivability func-
flies to men[2—5]. The steady decline in the functional abil- tion has been founffl8] to demonstrate a mortality plateau
|ty of an organism over time is known as senescence or a@.t -Older ages, a -reSUIt that had so far eluded theories of mu-
ing. The phenomenon of aging is of obvious interest and hation accumulation.
attracted attention from biologists and physicists for some T0 ensure that the population is in a steady state, the total
time [6]. population is controlled through the use of a Verhulst factor
The establishment and maintenance of harmful behaviorl9,20. Traditionally, this has been a genome-independent
by natural selection would appear to defy exp|anation_Chance of death for every individual regardless of age. This
Medawar proposed7,8] that the strength of selection on model also considers a birth rate that decreases as the popu-
survival related genes is dependent on the age at which tHation grows and resources become more sc&fig. In
genes exert their effects. For genes that express themselvégreement with earlier worki6], we find a maximum per-
late in the life of an organism, there is less impact on theMitted genetic lifespan and predict the existence of cata-
dwindling population than for a gene whose effect is ex-Strophic senescence for organisms whose reproductive life is
pressed earlier in life. terminated by an upper age limit. The model is extended to a
It has been suggest¢€] that favorable mutations that act continuum case, which is explicitly solved.
to increase survivability can be used to account for senes-
cence. S_uch_ _mutations will, under natura! select_io_n_, increase Il. THE PENNA MODEL
the survivability at early ages and converting an initially con-
stant mortality rate into an age-dependent one. It seems im- The Penna model as formulated by Penna represents a
probable that this mechanism can provide a full explanatiogenome by a single string of 1's and 0’s. Time is treated as a
of aging as positive mutations are very rare compared taliscrete variable. A 1 on a sitealong the string means that
harmful ones. Instead a better understanding can be gainddde organism develops a disease at agence an organism
by considering processes through which genes with harmfulevelops a numbér of diseases, it dies. At each time step an
effects are introduced. organism reproduces with probability The offspring’s ge-
There are two such theories: antagonistic pleiotropy andhome is a copy of its parent’s with a probabilityof each bit
mutation accumulatiorf10,11. According to antagonistic mutating into a 1. Positive mutations are rare in nature and
pleiotropy, senescence occurs as a result of mutations thanored in this model, there is no possibility of a 1 mutating
increase the functional ability of the young and decrease thahto a 0. The bit string is traditionally 32 bits long for ease of
of the old. Mutation accumulation proposes that aging occursomputational implementation. The finite-length bit string is
due to mutations that are initially harmless but take effect atn artifact of simulation and is discounted in our analysis
later stages in the life of an organism. In either case, thevhere there is no need for such a restriction. Along similar
force of natural selection is reduced once an organism agédimes to Almeida and Thomd4.7] we consider a fixed prob-
beyond its point of reproductive maturity so the effects ofability of mutation occurring on any site. The bit-string sites
either will be confined to older ages. are labeled so that there is a zeroth site, which is read as soon
The Penna model is the most commonly used model oés the organism is born.
aging through mutation accumulati¢p®2,13 and is ideally
suited to computational implementation. Using Monte Carlo
methodd 14], the model predicts features found in real eco-
logical systems, such as, the catastrophic senescence of Pa-Consider a simple Penna model where an organism dies
cific salmon[15]. Analytical work by Almeidaet al.[16] on  after a single diseaseT & 1) and can reproduce with equal

A. The solution of a simple Penna model
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probability at any point during its life. An individual organ- 0.08
ism can be characterized uniquely by two variables, itsxage 0.07 - - |
and its string lengtt. The string length is the location of the ’ = x

1 bit on the string and corresponds to the number of timeg 0.06 | .
steps for which the organism lives. To produce an organismsg R =

with string-lengthl either a perfect copy of a lengthorgan- 0.05 - ]
ism or a mutated copy of an organism with longer string® g4 | = ]
length must be born. To produce an organisms of stringS ® =

lengthl, an organism must give birth, with probability and 0.03 b 1
the firstl sites on the offspring must go unmutated, each withg 4 4, X &
probability (1—m). For the mutated offspring, the parent = =

string must be longer, the parent must give birth, with prob- ~ 0.01 | Ex 5 .
ability b, the firstl sites on the offspring must go unmutated 0% . . . . B
and one site must be mutated with probability As all or- 0 5 10 15 20 25 30
ganisms are capable of reproduction, mutated and perfec Genetic Lifespan L

copies of organisms of any age must be taken into account.

In our notationn;(x,!) is the number of organisms with FIG. 1. Lifespan distribution fol,,,=30. Analytical results
agex and string Iength at time steqj. We definee™ B to be (><) are compared with those from simulatidnl). Simulation size
(1—m). New organisms are produced as mutated or unmul?”-
tated copies of organisms in the previous time step:

opul
X
13

actiol

population,| ... For all other subpopulations with<l .,
the probability of an organism producing a perfect copy of
I I h ' . .
nj+1(0l)=be”# E (x,l)+mbe # E XZ (x17). itself must be less than 1 to avoid population explosion when
1= (1) contributions from mutation are taken into account.
It is sufficient to state that

For a steady state there is no difference betweenl) at
different time steps, so the time step indices can be dropped.
The simple Penna model is constructed in such a way that
organism with string lengthlives for| time steps. The prob-
ability of giving birth during each of these time steps is a
constanb. Thus the sum over all ages is a sum from 0 6d

(| max— 1)befﬁ(|max*1)< 1. (4

he constraints ohy,.x lead to a maximum sustainable value
and a corresponding steady-state birth rate,

n(x,1) which in the steady state can be written hs [ <; (5)
xn(0J). Definingn(l)=1xn(0J), the equation now reads M —e A
| (I) I 1
0=be A'n(l)~ —+mbe # 2 (2) b= —eflmax (6)
1> Imax

A similar equation can be written for(l+1). Manipulation ~ In agreement with Ref16] we have predicted the existence
of both will eliminate the sum ovel’ and give a recursion Of @ maximum sustainable genetic lifespan, see Figs. 1-6.
relation

0.08
n(+1) 1+1 ef bl . 007 | s ]
- I+1 —B &
n(l) I eflD_p(l+1)e? c 006 = R l
s =
If this expression is to be usefully employed, the steady statez 2 005 | = X 1
interdependence df and 8 must be examined. In the steady & 0.04 - ® |
state it is required that, in the statistical limit, the population © S ) = a
size and distribution remain unchanged over time for con-g2 0.03 | X .
5 =
stant values ob and g. g - a
As the string length gets longer, the probability of an 0.02 | X 1
unmutated copy being produced is reduced by an exponentic g1 | glz'z 2 _
factore #'. For an organism to be able to produce a single 2% ﬂg
perfect copy of itself during its lifespatbe #'=1. If any 0 5 5 10 15 20 25 Eg:;'%

subpopulation is capable of maintaining itself, there must be
no contribution to that subpopulation from mutations. As all
subpopulations will have contributions from mutation from  FIG. 2. Lifespan distribution fok,,,=30, Iz=5. Analytical re-
longer strings, it follows that a subpopulation capable ofsults (x) are compared with those from simulationl). Simula-
maintaining itself must have the longest string length in thetion size 10.

Genetic Lifespan L
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FIG. 3. Lifespan distribution fot,,,=30, y=0.02. Analytical FIG. 5. Lifespan distribution fot,,,=30, T=4.
results (<) are compared with those from simulationl). Simu-
lation size 16.

In the steady state the total population will be that required to
set this dynamic Verhulst birth rate to the value required by
The system has a range of possible valueslfgr and  the earlier equilibrium conditions:
will adopt one depending on the dynamics and the initial
state of the system. In simulation, a population is often regu-
lated through the use of a Verhulst fac{d?2,19,2Q. This eBlmax
ensures that a population will find a steady state configura- N= Nman( 1= A )
tion. Such simulations also regulate the total population, max
which is realistic in any system with finite resources. It has
been suggestef1] that by regulating the birth rate, the
system will adopt a biologically realistic equilibrium. The
simple Penna model solved here can be used to explain be-
havior of these simulations, which replace the constant birth Frequently the Penna model usgiB] has birth cut-offs
rate with a population-dependent one. Whbkés the total SO that an organism begins giving birth at an dgeyp to an
population,A a constant of the simulation, ard.,, is the — age,ls. When able to reproduce, an organisms does so at

maximum population the simulation will allow, the birth rate rate b as before. The equation for stepwise evolution of an
at any time step is given by age zero subpopulation remains the same except that the

birth rate is now a function of the organism’s age. An organ-
ism is no longer capable of reproducing in every time step,

B. The solution of a Penna model with reproductive
threshold ages

_ N; but only those for which its age is greater than or equakto
bi=Al 1— : (7
Nia and less thahg. The sum over ages must now sum over the
age-dependent birth term as well:
0.08 T T
MR 0.08
0.07 | g2 = ]
R X 0.07 XXX 1
c 006 2 . X
£ 0.06
=1 g c K - -
3 0051 ® ] E
S = S 005} .
5 004} & X 1 &
c = T 004} :
g 003} = 1 5
8 o X £ 003} 1
L 002f - . 3 %
X X L 0.02f .
001 g | y
L X 0.01 | :
0 L 2 L 2 2 &M X
0 5 10 15 20 25 30 0 L L A L nX
Genetic Lifespan L 0 5 10 15 20 25 30
. o Genetic Lifespan L
FIG. 4. Lifespan distribution fol,,,=30, |z=5, y=0.02. Ana-
lytical results () are compared with those from simulationl). FIG. 6. A plot of genetic lifespan distribution for a discrete
Simulation size 1% (X) and continuum Penna model witf,,=30.
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- o o b(lg—lg)e Plma=1, (19
n(oH=e A b,n(x,H+me A D bnixl’).
x=0 "> x=0 © b(lg—lg)e Plmac <1, (20)

L g . i : .
As in the simple Penna modeh(l) is defined to bel Requiringe”<1. This cannot be satisfied #sis a mutation

Xn(0)) as the survivability function is unaltered. Summing rate and _consequently a positive number. As a rasltis
: S not permitted to be greater than the second birth thredhold
over reproductive ages leads to a simplified steady stat;

for any value of mutation rate or birth rate. A steady state

equation . . o :
population will not maintain organisms that are no longer
n(l) % able to contribute to reproduction. This result does not apply
0=be #'y(Hn(l)— |—+mbe*/3'2 x(IHn(1"), to organisms who have some social structure and assist in

1> rearing young once they themselves are no longer of a repro-
(100 ductive age. Such cooperative complicatidi@®] are not

where (1) is defined ag$7_gb,n(x,1)]/[bn(0J)] and is '@KEN into account here.
given by ) )
C. The solution of a Penna model with an external death rate
x(h=0 for I=<lg Consider the simple Penna model. An external death rate
is introduced into this model so that in any time step an
organisms has a changeof dying independent of its bit-
string composition. We define the survival rateas 1— v.
Counting contributions from unmutated and mutated repro-

Employing the same method as was used to solve the simpfction, the steady-state equation is
Penna model, a recursion relation can be obtained,

Y(D=lg—lg for I>I. (1)

n(0])=be # Eo n(x,l)+mbe A > 20 n(x,1").
X= I'>] X=

[+1) 1+1 Al y(l
n(l+1) e x(1) 12 o

n() | ef+D_py(+1)e F’

The sums over all ages can be evaluated by taking into ac-

In the case of no birth thresholdg(l)=1 and we retrieve count the external source of death:

Eq. (3).
The steady state conditions for a population will have o -1 1- ¢

been altered by the introduction of birth threshold ages. The > nx=2, o*n(0))= n(oJl). (22
conditions forl .« are, by the same reasoning as before, x=0 x=0

| abe Pmay (] )=1, (13 Definingn(l)=[(1—¢')/y]n(0)}), the steady state equation

can be rearranged to give
(Imax— 1)be™Almac Dy (1 0~ 1)< 1. (14) .
- Y _

L - . = Bl — Bl !
There are two distinct nontrivial cases for the position of 0=be "n(l) 1—o n(l)+mbe |'§>:| n(l"). (23
I max, €ither it is below the upper reproductive boundary or it
is contained within the reproductive window. The same approach is used as before to give an recursive

Considerl ma=ls. The boundary conditions can be writ- relationship between(l) andn(l+1):
ten as

n(l+1) 1-o'*1 efl—1+¢
(Ina—s)beFnas=1, 19 e y Rer
n) ~ 1-o yefltD_(1-gthe
(lmax_l_lB)be_B(lmax_l)< 1. (16) . L
In the limit of a vanishing external death ratesmall )
After rearrangement, this yields power-series expansion of these expressions will, to leading
order, give the conditions from the simple Penna md@gl
1+(e P-1)lg To find the steady state relationship betwéeB, andy,
max<ﬁ (17)  the same conditions are imposed as befafé,,,) must be
€ self-sustaining and all lower string lengths are partly reliant
with a corresponding birth rate of on mutation:
Bl 1— O-l max
_ €7 max be_ﬁlmax: ]_,
b= = (19 y
. " ~ a1
Consider now the case 6f,,>ls. The boundary conditions 1U—mbe,ﬁ(|max,l)<l_ 25

become
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These conditions give the birth rate and limit the value ofdeath. Each site on the string is occupied by one or no del-

I hax: eterious mutations, multiple mutations on a single site are

not allowed.
ef—1 The relevant part of an individual string is that containing
In m the first T 1s, as bits after this point are irrelevant. Rather
oy ———————, (26)  than uniquely classifying an organism by its genetic lifespan
Ino I, as was done in the single mutation case, we must now
specify the position of each of the fir§t mutations on the
yeh!max organism’s bit string. The only other property an organism
b= 1— glmax 27 hasis its age. Any individual can thus be uniquely classi-
fied by its typex;l,l5, ... |1, wheren(x;l1,l5, ... l7) is

In the limit of a small external death rate these expressionde number of the specified organisms. The position of the

become those from the simple Penna model case, Gys. final disease on the string determines an organism’s age of
and (6). death, the position of the other bits play no part in this, nor

An external death rate is commonly used in simulationsd0 they determine birth rate. This inspires the ansatz that
[12,13 as a Verhulst factor to regulate the population. In anyn(X:{l}) has no dependency on the positions of the nonter-
time step an organism has probability of death given byminal diseases. _ _ _

N; /Nmax. The preceding analysis can be used to explain how Contributions to a child subpopulation from a single mu-
systems using this Verhulst factor behave. In the steady stat@tion come from all organisms withi—1 bits in common
the external death rate provided by this Verhulst factor musyith the child subpopulation, and the final bit at a position

satisfy the above conditions for stability at and arolgg,. !’ >!v- ForT=4, wherely, |5, |5, andl, are the deleterious
For specified, 8, andl ., ¥ can be found numerically and Pit positions in the child subpopulation, there will be contri-
the total population can be found froN= yN . butions  from  mutation  from n(x;ly.l2.15.1"),

N1, 04,07, n(xll3,04,17), and n(x;l,,13,04,1").
Our ansatz means that all these terms are the same as they
are dependent on only ageand the position of the terminal
bit I’. Wheren(x,l) is the number of organisms with age

It is a relatively trivial matter to extend the analysis of a and terminal mutation at sitg the number of organisms
Penna model with an external death rate to incorporate birtBapable of contributing through a single mutation is
threshold ages. This type of model has been extensively stud=n.(x,1’). In a similar vein to the single disease Penna
ied in simulation, so is of sufficient interest to consider sepamodel, we can now account for all birth terms and generate a
rately. Only the lower birth threshold needs to be consideredsteady state equation:
An upper threshold, as demonstrated, will only serve to arti-

D. The solution of a Penna model with an external death rate
and reproductive threshold ages

ficially lower the maximum allowable string length... As B ”
ever, in the steady state nr(0J)=he’! T+1)X20 nr(x,1)
n(o,l):e7B|ZO bxn(X,|)+mefﬁI|§I XEO bxn(X,|'). +Tmb§(|*T+l)2 2 nT(X,l /). (31)
4 x=0
(28) 1">1

This can be solved in the same manner as that for the simple

Taking external deaths into account when summing over r'epenna model whene(1) =1 % n7(0))

productive ages, we defing,(l) as
nT(|+1)_|+1>< e AUI-T+D_p|
nr(l) I e AUFLTH D _p(1+1)(ef+T-1)

a'B—¢ (32
for Ig=<I. (29

X,()=0 for I<lg

x(=
7 ny(1) is not of direct interest in determining age distributions

or mortality rates as it is only one of several configurations
of nonterminal mutations. This is amended by summing over
all possible configurations so tha(l)=C'T_1nT(I).

The steady state correspondence betwgefl, andl .,

With n(1) given by[(1—¢')/y]n(0)l), a recursion relation
for n(l) can be given

I+ Bl _
n(IJIrl) = 170 | : e” ~bx,() . (30) forarbitraryT is
+1 -
n(l) 1-o' ef+D—py (I+1)e ? .
I S — 33
E. The solution of a multiple disease Penna model M1 —e B 33
An organism in the simple Penna model dies upon en- 1
countering a single 1 on its bitstring. Models are frequently b= — eAlmaxT+1), (34)
set up so that an organism must develogiseases before | max
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Confirming the solution of a multiple disease Penna % % o
model through simulation presents considerable problemsn(OJ):be_B'J n(x,l)dx+mbe‘ﬁ'f de dli'n(x,1").
The solution presented here is not unique and there is no 0 0 ! (39)
reason for a given simulation to settle on this particular
steady state distribution. Within any finite population, it hasAs in the discrete case the sum over ages, now an integral,
been demonstratg@3] that if individuals are arbitrarily la- can be evaluated employing the fact ting0,1) is constant

beled, then, after sufficient time, the entire population will gver time. The integral over agesofx,|) can be written as
have descended from individuals with just one of these arbin(|), wheren(1)=1xn(0/), giving

trary labels. The ansatz used treats the nonterminal mutations

as arbitrary labels so the assumption that they are evenly gl n(l) o [T
distributed will be upset by finite-sized population dynamics. 0=be "n(l)+ - ——+mbe | n(1")dl’. (40
F. The solution of a multiple disease Penna model with The steady state equation can be rewritten in the form below
external death rate and reproductive threshold ages and the integrals evaluated numerically:
As in the single mutation case, it is a relatively simple n(l+x) 1+x ef _pl
matter to adapt the multiple disease solution to incorporate () = B0
external death rate and birth thresholds. An upper birth cutoff e —b(l+x)
is not considered as this will only serve to artificially lower i bl
I max- We do not spend any time on the der_ivation here but X ex f _mb T di' | (41)
present the results for those who may consider them of par- I bl'—e#

ticular interest.
Wheren(l)=[(1—d¢")/y]n(0}}) and x,(1) is given by As in the discrete Penna model, in the steady statk,.,)
must be self-sustaining and all subpopulations with a lower
X,(D=0 for I<lg genetic lifespan partly reliant on mutation. Ag no longer
constrained to be an integer, the conditions become

o'e—g

— Bl max—
x,(D= for lg=<lI, (35) | mae™ Fimax=1, (42)
(I max— 6)be™ Allmac A< 1, (43)
n(l+1) Cyhl-g'*? where§ is arbitrarily small. These conditions give
Tl
n(l) Cr_1 | — o | 1 s
- maxS s
" efl=T+D—py (1) B
P T by (1+1)(ef+T—1) 1,
(36) b= Ee max, (45)
(eﬁ— 1)UIB H. A continuum Penna model with multiple diseases
I eBo1-1 A multiple disease Penna model can also be reformulated
I max< I , (37)  into a continuum case. The mutations are considered #® be
no functions[17] and, as in the discrete case, an organism dies
once it has accumulate diseases.
yeBlmacT+1) Recalling the first-order steady state equation from the
b= Y (38 discrete multiple mutation model
o B— g'max
0=be Al-T+1n (1)~ M)
G. A continuum Penna model !
The simple Penna model can be reformulated so that +Tmbe AI-T+DS n(17). (46)

rather than considering discrete time steps, time is treated as
a continuous variable As before any subpopulation is char-
acterized by its aga and string lengtth, which are no longer In the continuum model, where mutations no longer take up
constrained to be integers. The birth rates now the prob-  a finite length on the string, this will become

ability of an organism reproducing in unit time. Likewise,

17>

the mutation raten is the probability of a mutation occurring e Bl B nr(l) ,mf AN
in unit string length. The steady state equation for this model 0=be "nr(l) I +Tmbe |r>|nT(| i’
is 47
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An integral equation can be derived from this using a similar *
approach as in the single disease continuum case. To evalu- L= Z fs(x,1), (549
aten(ly), all possible configurations of nondeleterious mu- x=0
tations must be summed over. w
In the discrete Penna model this leads to
bx(h=2, b(x,Hfs(x]), (55

n(l)=C\_,n(l), (48) _ _
the steady state equation can be written as
as each mutation takes up one site on the string. When posi- .
tioning & functions, there is no possibility of mutations over- 0—pe# x(1) (1)~ n(l) FmbeAS x(1") .

lapping as they are of infinitesimal size on the string. In the L(l) L(1) “ZoLan
continuous case&)(l) is given by (56)
n(H=1""tny(l). (490 L(l) is the expected lifespan of an organism with string
lengthl andbx(l) is the expected number of offsprings from
n(l++x) is given by an organism of string lengththroughout its lifeb has been
chosen so that throughout this paper the highest birth rate in
n(+x) (I+x)"T"11+x el —pl any time step i®. Using the steady state equation, a general
n(l) = |T-1 | AU+ (| 1 x) recursion relation can be generated
Bl _
i mbTl n(I+1):L(I+1) [e”'—Dbx()] 57
xXex J’l Wdl, . (50 n(l) L(l) [eﬁ(|+l)_bx(|+1)e*ﬁ]

The conditions imposed oh,a to ensure than(l ., is

The steady state conditions are unchanged from the singlgsif-sustaining and that the population remains finite are
disease continuous Penna modelTas1 will only affect

contribution from mutations that have no effect on the sub- bx(Imaye #lmax=1, (58
population with string length,.,. The steady state condi- —
tions are bx(Imax—1)e Almac <1, (59
1 Thus
Imaxg Pl (51)
B I max— 1
X(m;ax)<e*ﬁ, (60)
1 X (I may)
b: _eﬁlmax. (52) Bl
Imax b eP'max (61)
X(Imax

IIl. APENNA MODEL WITH ARBITRARY BIRTH AND

SURVIVABILITY EUNCTIONS The survival functionf4(x,l) should for physical reasons

be a monotonically declining function. There are no con-
The methods employed to solve the variety of Pennastraints on the birth function other than that it must be posi-
models discussed so far can be generalized to any Pentige. Through suitable choices of birth and survivability
model where the birth and survival functions are functions offunctions, the Penna model can be adapted to model a wider
the organisms’ age and genetic lifespan. The survival funcvariety of real-life behavior. In previous wofi 8], we have
tion is defined so that the number of organisms of age = demonstrated that a subtle modification to the simple Penna
given by n(x,1)=f4(x,1)n(0Jl). The birth functionb(x,l) model, namely, replacing the step-function survivability with
gives the average number of offsprings produced per tima Fermi function, is capable of producing a mortality plateau.
step by an organism of ageand string length. The steady- This particular modification does not change the steady-state
state equation can be written as equation from that of the simple Penna model, though this
would not pose any problem to the general solution pre-
~ sented here.
n(0,|)=ef’3'2 b(x,H)n(x,I) Incorporating the methods used to solve continuous and
x=0 T>1 models in this paper will allow for application of this
general method to arbitraff/>1 and continuum cases.

ﬁLme*B'E0 > bix, I )n(x,1"). (53
x=017>

IV. EXTRACTING MORTALITY DATA FROM GENETIC

Defining n(1)==;_on(x,1), wheren(l) is the number of LIFESPAN DISTRIBUTIONS

organisms with string length regardless of their age, and  The solutions presented so far have derived relationships
employingx(l) andL(l), where for distribution of genetic lifespans of a population. From
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genetic lifespan distributions, mortality behavior can be

evaluated. Recall that a distribution was determinedf{oy,
that is, the number of organisms with genetic lifespafhe
required quantity for evaluating mortality ratesni€0,l) and
is given byn(l)/L(l).

The number of organisms of genetic lifespadying be-
tween agex andx+1 is given by

n(x,)—n(x+1)=nOhH[f(x,1)—fs(x+1])]. (62

The number of organisms dying at ageis this quantity

summed over all genetic lifespans. The fraction of the tota
population dying at age is defined as the time-step mortal-

ity rate M(x),

}lj nON[fo(x,1)—fo(x+11)]

M(X)= (63)

El n(0)fg(x,1)

PHYSICAL REVIEW E67, 061909 (2003

V. CONCLUSION

We have presented an analytic solution to the steady state
Penna model capable of dealing with arbitrary survival and
birth functions. We hope this will stimulate further modifica-
tions to the Penna model, where suitable choices of birth and
survival functions will allow an adapted Penna model to en-
compass and explain more observed phenomena within age
structured populations. In our future work we will study the
dynamics of the Penna model and consider more sophisti-
ﬁqated complications such as the introduction of a positive

utation rate.
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